您好、欢迎来到现金彩票网!
当前位置:2019欢乐棋牌 > 作业周期 >

求作业答案!

发布时间:2019-07-13 23:12 来源:未知 编辑:admin

  ⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。

  ⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。

  ⑶如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈r,且r关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  ⑷如果对于函数定义域内的存在一个a,使得f(-a)≠f(a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  1.概念的提出:将日历中“星期”随日期变化的周期性的出现和正弦函数值随角的变化周期性的出现进行对比,寻求出两者实质:当“自变量”增大某一个值时,“函数值”有规律的重复出现。

  出示函数周期性的定义:对于函数y=f(x),假如存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

  “当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.

  2.定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)

  所以正弦函数和余弦函数均为周期函数,且周期为 T=2kπ(k∈Z且k≠0)

  对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

  对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)

  分析:cosx中的自变量只要且至少增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.(说明cosx前面的系数和周期无关。)

  分析:因为sin2(x+π)=sin(2x+2π)=sin2x, 所以自变量x只要且至少增加到x+π时,函数值就重复出现。所以原函数的周期为π。(说明x的系数对函数的周期有影响。)

  (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。

  (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。

  (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集)

  (6)若T1、T2是f(X)的两个周期,且 是无理数,则f(X)不存在最小正周期。

http://ampguimods.com/zuoyezhouqi/214.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有